Mark Scheme (Results)

November 2022

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2022
Question Paper Log Number P68725
Publications Code 1MA1_3H_2211_MS
All the material in this publication is copyright
(C) Pearson Education Ltd 2022

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line. If no answer appears on the answer line, mark both methods then award the lower number of marks.

5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths),
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (eg 3.5-4.2) then this is inclusive of the end points (eg 3.5, 4.2) and all numbers within the range

11 Number in brackets after a calculation

Where there is a number in brackets after a calculation eg 2×6 ($=12$) then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas eg " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets eg [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

14 Misread

If a candidate misreads a number from the question. eg uses 252 instead of 255 ; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
6 (a) (b)	$\begin{gathered} 0.7 \\ 0.65,0.65 \\ 0.105 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for 0.7 on the first branch for $0.65,0.65$ on the second branches for 0.3×0.35 oe	Accept equivalent fractions or percentages for probabilities
$7 \quad$ (a)	$\begin{gathered} 0.008 \\ 50 \end{gathered}$		for 0.008 or 8×10^{-3} for conversion from km to $\mathrm{m} \mathrm{eg} 180 \times 1000(=180000)$ or for conversion from hours to seconds eg $180 \div(60 \times 60) \quad(=0.05)$ or for conversion from km per hour to metres per second, eg $1000 \div(60 \times 60) \quad(=0.277 \ldots)($ Accept $(60 \times 60) \div 1000(=3.6))$ for a complete process eg $180 \times 1000 \div 3600$ cao	May be awarded at any stage
8	158	P1 P1 A1	for a first step in the process eg $50 \times 167.6(=8380)$ or $20 \times 182(=3640)$ for a complete process $\operatorname{eg}(50 \times 167.6-20 \times 182) \div 30 \text { or } \frac{8380-3640}{30} \text { or } 4740 \div 30$ cao	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
9 (a) (b)	$\begin{gathered} 0.000675 \\ 6.592 \times 10^{5} \end{gathered}$	B1 M1 A1	```cao for \(10.5472 \times 10^{3}\) oe or \(1.6 \times 10^{8}\) oe or \(2.575 \times 10^{-1}\) oe or for \(6.592 \times 10^{n}\) where \(n \neq 5\) or for \(6.59 \times 10^{5}\) or for \(6.6 \times 10^{5}\) or for 659200 oe cao```	If the answer (for 2 marks) is seen in working and then rounded or truncated, award full marks.
10	Explanation	C1	for full explanation indicating the problem with the negative signs Acceptable examples He should have $+2 x+4$ on the second line He should have done --4 and $--2 x$ $3 x--2 x=5 x$, not $1 x$ Two minuses make a plus which he didn't account for Not acceptable examples He has not expanded the brackets Peter has to factorise first He did not collect the terms He didn't include the x^{2}	
11	5, 6, 7	M1 A1	for identification of possible values of $x(4,5,6,7)$ or of $y(5,6,7,8,9)$ cao	Could be shown on a number line or using a Venn diagram This mark can be awarded for an answer of 4, 5, 6, 7 Answers may be given in any order.
12	1.2, 1.3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	for 1.2 in the correct position for 1.3 in the correct position	Accept 1.29 or $1.299 \ldots$ must be 9 recurring.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	Statements	$\mathrm{C} 1$ $\mathrm{C} 1$	Makes reference to the fact that the label on the horizontal axis is missing Makes reference to the fact that the graph has not been plotted at the top end of the class intervals, eg has plotted at midpoints	
(a) (b)	$x^{3}+3 x^{2}-10 x-24$	B2 (B1 M1 M1 A1	cao for two of $\left.81, x^{20}, y^{24}\right)$ for method to find the product of any two linear expressions (3 out of 4 terms correct or 4 correct terms ignoring signs), eg $x^{2}+2 x-3 x-6$ or $x^{2}+2 x+4 x+8$ or $x^{2}+4 x-3 x-12$ for a complete method to find all terms, at least half of which are correct (ft their first product), eg $x^{3}+4 x^{2}+2 x^{2}-3 x^{2}+8 x-6 x-12 x-24$ cao	Note that, for example $-x-6$ in expansion of $(x+2)(x-3)$ is regarded as 3 correct terms. First product must be quadratic with at least 3 terms but need not be simplified or may be simplified incorrectly
15	Shown	M1 $\mathrm{C} 1$	for one correct product eg $7 \times 5(=35)$ or $13 \times 5(=65)$ or $7 \times 13 \times 5(=455)$ for showing three correct products added eg $35+65+455$	Ignore additional products There is no need to show the three products sum to 555

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	40	M1	for $A B D=120$ and $A E D=60$ or for using the properties of a cyclic quadrilateral eg $E A B+B D E=180$	Angles may be shown on the diagram
		M1	for using the ratio of $2: 1$ eg showing sizes of angles such that $E A B: B C D=2: 1$	May be expressed using algebra eg $E A B=2 x$ and $B C D=x$
		M1	(dep on M1) for linking an angle from the cyclic quadrilateral with angle(s) in the triangle (other than $E A B: B C D=2: 1$) eg $B D E=B C D+60$ or $B D E=180-B D C$ or $E A B+B C D+A E C=180$	Could be expressed using algebra eg $x+60=180-2 x$
		A1	for $B C D=40$ from correct working	
17	42: 63: $15: 20$	P1	for a first step to write a relationship between 2 weights, eg $\mathrm{A}+\mathrm{B}: \mathrm{C}+\mathrm{D}=3: 1$ or $\mathrm{A}: \mathrm{B}=2: 3$ or $\mathrm{C}: \mathrm{D}=3: 4$ or $\mathrm{A}+\mathrm{B}=3(\mathrm{C}+\mathrm{D})$ or $\mathrm{A}=\frac{2}{3} \mathrm{~B}$ or $\mathrm{C}=\frac{3}{4} \mathrm{D}$	
		P1	for giving all 3 relationships in the same form eg $\mathrm{A}+\mathrm{B}: \mathrm{C}+\mathrm{D}=3: 1$ and $\mathrm{A}: \mathrm{B}=2: 3$ and $\mathrm{C}: \mathrm{D}=3: 4$ or $\mathrm{A}+\mathrm{B}=3(\mathrm{C}+\mathrm{D})$ and $\mathrm{A}=\frac{2}{3} \mathrm{~B}$ and $\mathrm{C}=\frac{3}{4} \mathrm{D}$	
		P1	for complete process to link all 4 weights, eg $\frac{2}{3} \mathrm{~B}+\mathrm{B}=3\left(\frac{3}{4} \mathrm{D}+\mathrm{D}\right)$ and $\mathrm{A}=\frac{2}{3} \mathrm{~B}$ and $\mathrm{C}=\frac{3}{4} \mathrm{D}$ or $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=\mathrm{A}: 63: \mathrm{C}: 20$ and $\mathrm{A}=\frac{2}{3} \mathrm{~B}$ and $\mathrm{C}=\frac{3}{4} \mathrm{D}$ or $\mathrm{C}: \mathrm{D}=3: 4$ and $\mathrm{A}: \mathrm{B}: \mathrm{D}=42: 63: 20$	
		A1	oe	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	Description	C1 C1	for translation $\text { for }\binom{8}{0}$	Award no marks if more than one transformation May be described as, for example "by 8 units in the direction of the x axis"
19	16	P1 P1 A1	for $\operatorname{Prob}(\mathrm{R}$ or G$)=1-0.4(=0.6)$ or for (number of red or green counters) $=50-0.4 \times 50(=30)$ or for use of ratio, $\mathrm{eg}\left[\text { probability] } \times \frac{8}{15}(=0.32) \text { or [number of counters] } \times \frac{8}{15}\right.$ for a complete process to find number of green counters, eg $(1-0.4) \times \frac{8}{15} \times 50$ or for $\frac{16}{50}$ cao	[probability] may be 0.4 or 0.6 [number of counters] may be 20 or 50
20	Proof	C1 C1 C1	for angle $E A C=$ angle $E D B$ (Base angles of an isosceles triangle are equal) or for explanation that $A B+B C=B C+C D$ using ratio so $A C=D B$ oe or $A E=D E$ (given) for at least 2 correct pairings with reasons for a complete proof including all reasons given and SAS	Reasons must be linked to their method.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
21	$\begin{aligned} & (7,-196) \\ & \text { supported } \end{aligned}$	P1 P1 A1	for process as far as $4\left(x^{2}-14 x\right)$ or $(2 x-14)^{2}+c$ or for $(x-7)^{2}-49$ for full process to complete the square eg $4\left((x-7)^{2}-49\right)$ or $(2 x-14)^{2}-196$ for conclusion from correct use of completing the square	c may be 0
22	$\begin{aligned} & a=4 \\ & b=110 \end{aligned}$	M1 A1	for writing at least one of the 3 terms with a denominator of $\left(x^{2}-25\right)$ or $(x-5)(x+5)$ eg. $\frac{(2 x+3)(x+5)}{x^{2}-25}$ oe or $\frac{(x-4)(x-5)}{x^{2}-25}$ oe or $\frac{3\left(x^{2}-25\right)}{x^{2}-25}$ oe for $\frac{(2 x+3)(x+5)}{x^{2}-25}+\frac{(x-4)(x-5)}{x^{2}-25}-\frac{3\left(x^{2}-25\right)}{x^{2}-25}$ oe or for $\frac{3 x^{2}+4 x+35}{x^{2}-25}(-3)$ or for $\frac{\left[3 x^{2}+4 x+35\right]}{x^{2}-25}-\frac{3\left(x^{2}-25\right)}{x^{2}-25}$ oe for $a=4$ and $b=110$	Students may work with a denominator of $(x-5)(x+5)$ for the award of the first 2 marks.
$23 \quad \text { (a) }$ (b)	Sketch $y=-\mathrm{g}(x)$	B1 B1	for appropriate sketch which crosses the x axis at $(-3,0),(-1,0),(0,0)$ and passes through $(-2,2)$ with end points in the correct square oe	Allow some tolerance on the points and in drawing the curve if the intention is clear Accept $-y=\mathrm{g}(x)$

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
24	Proof	C1 C1 C1 C1	for $\overrightarrow{C E}=2 \mathbf{a}-\mathbf{b}$ oe for $\overrightarrow{E P}=2 \mathbf{a}-\mathbf{b}$ oe or for $\overrightarrow{C P}=4 \mathbf{a}-2 \mathbf{b}$ oe for $\overrightarrow{C F}=\mathbf{a}-\mathbf{b}$ oe or for $\overrightarrow{D P}=2 \mathbf{a}-2 \mathbf{b}$ oe for $\overrightarrow{C F}=\mathbf{a}-\mathbf{b}$ and $\overrightarrow{D P}=2 \mathbf{a}-2 \mathbf{b}$ (or $2(\mathbf{a}-\mathbf{b})$) leading to conclusion	Vectors may be seen on diagram. Award marks provided not ambiguous. For the award of the first 3 marks, expressions for vectors $\overrightarrow{C E}, \overrightarrow{E P}, \overrightarrow{C P}, \overrightarrow{C F}$ and $\overrightarrow{D P}$ may not be simplified
25	14.1	P1 P1 P1 P1 A1	for a process to find the volume of the top eg $92.8 \div 2.9(=32)$ for finding total mass of P eg $92.8+972.8(=1065.6)$ for finding total volume of P eg $\frac{" 1065.6 "}{4.7} \quad(=226.7234)$ (dep P2) for $\frac{" 32 "}{[\text { total volume }]} \times 100$ for answer in the range 14.1 to 14.2	Values can be truncated or rounded For this mark, [total volume] does not have to come from a correct process but is the value that the student believes is the total volume of the pyramid.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
26	15.8	P1	```starts process by finding an angle, eg exterior angle \(=360 \div 7(=51.42 \ldots)\) or interior angle \(=\frac{900}{7}\) or \(180-(360 \div 7)(=128.57 \ldots)\) oe```	Accept values to 3 figures rounded or truncated
		P1 P1	start of process to find length of side by using area, eg $\frac{1}{2} \times A B \times A G \times \sin G A B=30$ oe or $\frac{1}{2} \times a \times b \times \sin [128.5 \ldots]=30 \mathrm{oe}$ or $\frac{1}{2} \times x \times x \times \sin [128.5 \ldots]=30 \mathrm{oe}$ or $\frac{1}{2} \times A G \times \frac{1}{2} G B \times \sin A G B=15 \mathrm{oe}$ or for a relationship linking $G B$ and $h, \frac{1}{2} \times G B \times h=30$ oe for process to find the length of a side of the polygon eg $\sqrt{\frac{2 \times 30}{\sin " 128.5 \ldots . . "}}$ oe $(=8.76 \ldots)$ or for process to get a second relationship linking $A G$ and $\frac{1}{2} G B$, eg $A G \times \cos$ "25.7..." $=\frac{1}{2} G B$ oe or for process to get a second relationship linking $G B$ and h, eg \tan "25.7..." $=\frac{h}{\frac{1}{2} G B}$ oe	Any symbols used in formulae must be consistent with any labels on the diagram. For this mark, [128.5...] does not have to come from a correct process but is the value that the student believes is the interior angle.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/3H}

\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \& \& P1

A1 \& | for complete process to find $G B$ eg $\frac{" 8.76 \ldots . . " \times \sin " 128.5 \ldots . . "}{\sin " 25.7 \ldots \text { ".." }}$ oe |
| :--- |
| or $\begin{aligned} & \sqrt{" 8.76 "^{2}+" 8.76^{2}-2 \times " 8.76 " 2 \times \cos " 128.5 \ldots "} \text { oe } \\ & \text { or } \\ & 2 \times \text { " } 8.76 \ldots . . " \times \sin \text { " } 64.2 \ldots . . \text { " or } 2 \times \text { " } 8.76 \ldots . . \text { " } \times \cos \text { " } 25.7 . . . " \text { oe } \\ & \text { or } \sqrt{\frac{2 \times 60}{\tan " 25.7 . . . " " ~}} \text { oe } \end{aligned}$ |
| for answer in the range 15.7 to 15.8 | \&

\hline
\end{tabular}

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 3H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
Notes apply to both MLP papers and Braille papers unless otherwise stated.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 50
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
1		Value changed: a to n	Standard mark scheme but note change of letter.
2		Equations stacked vertically and moved left with equals symbols aligned.	Standard mark scheme
4		Wording added 'Look at the diagram for Question 4 in the Diagram Booklet. You may be provided with a model. It is not accurate.' Diagram enlarged. Model provided. ' 160 cm ' label moved to left side.	Standard mark scheme
5		Wording added 'Look at the diagram for Question 5 in the DB.' Diagrams stack vertically and enlarged. Angle arcs made smaller. Arcs at C and F separated more. Wording added: $\mathrm{AC}=5 \mathrm{~cm} ; \mathrm{BC}=4 \mathrm{~cm} ; \mathrm{DE}=22 \mathrm{~cm} ; \mathrm{DF}=20 \mathrm{~cm}$; 'Angle ABC = Angle DEF' ; 'Angle ACB = Angle DFE'	Standard mark scheme
6		Wording added 'Look at the diagram for Question 6 in the DB.' Diagram enlarged.	Standard mark scheme
11		Left align information. Values changed: x to p, y to q	Standard mark scheme but note change of letters
13		Wording added 'Look at the diagram for Question 13 in the Diagram Booklet.' The word 'this' removed and replaced with 'the'. Wording added 'in the table below'. Table and diagram enlarged. Open headed arrows. Crosses changed to dots. Small squares removed. The word 'this' removed and replaced with 'the'. Wording added 'in the Diagram Booklet'.	Standard mark scheme
14	(b)	Value changed: x to y	Standard mark scheme but note change of letter
15		Wording added 'Look at the information for Q15 in the Diagram Booklet. It shows details about the fish in a pet shop.' Information moved to the Diagram Booklet and left aligned	Standard mark scheme
16		Wording added 'Look at the diagram for Question 16 in the Diagram Booklet.' Diagram enlarged. Angle moved outside the angle arc. Angle arc made smaller. Ratio left aligned.	Standard mark scheme
20		Wording added 'Look at the diagram for Question 20 in the Diagram Booklet.' The wording 'The diagram' removed and replaced with 'It'. Diagram enlarged	Standard mark scheme

PAPER: 1MA1_3H		Mark scheme notes	
Question		Modification	Standard mark scheme
23	(a)	Wording added 'Look at the diagram for Question 23(a) in the Diagram Booklet. It shows'. The wording 'is shown on the grid below' removed. Diagram enlarged. Open headed arrows. Axes labels moved above the vertical axis and right on the horizontal axis. Wording added 'in the Diagram Booklet'.	Standard mark scheme
23	(b)	Wording added 'Look at the diagram for Question 23(b) in the Diagram Booklet.' The word 'this' removed and replaced with 'the'. Wording added 'in the Diagram Booklet'. Diagram enlarged. Open headed arrows. Axes labels moved above the vertical axis and right on the horizontal axis. Graph B line made dashed. Key added to show graph line A and graph B. Odd numbers removed from X axis.	Wording added 'Look at the diagram for Question 24 in the Diagram Booklet. It shows'. Diagram enlarged. Open headed arrows.
24		Wording added 'Look at Diagram 1 and Diagram 2 for Question 25 in the Diagram Booklet. You may be provided with a model. It is not accurate.' Diagram enlarged. Diagram added to show side view. Labels moved to left side. Dashed lines longer and thicker. Model provided.	Standard mark scheme
25	Wording added 'Look at the diagram for Question 26 in the Diagram Booklet.' Wording added 'Points G and B are joined to form triangle ABG.' Diagram enlarged.	Standard mark scheme	
26			

